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SECTION 1

INTRODUCTION

This paper describes an algorithm for solving the general
nonlinear programming problem. The method is an extension of the

accelerated multiplier method described in Ref. 1. The algorithm

combines aspects of the multiplier method proposed by Powell (Ref. 2) 
I 

-

and independently by Hestenes (Ref. 3), with the gradient projection
algorithms suggested by a number of authors including Fletcher (Ref. 4)
and Murtagh and Sargent (Ref. 5) .  The algorithm deals with inequality
constraints directly, while re taining the favorable numerical properties
of the multiplier methods . Search directions are computed using a
projection-like formula which avoids the ill-conditioning in penalty
function methods reported by Fletcher and McCann (Ref. 6) and ad-
dressed by Biggs (Ref. 7) and Mur ray (Ref. 8). The convergence of
the multiplier method is accelerated by using a gradient projection
technique to solve the constraints.

The problem of interest in this paper is to determine the n-vector
x that minimizes the scalar function,

f(x) f(x1, . . . , xn) ( 1)

called the objective function, subject to the equality constraints

c1(x) = 0, = 1,... , k, (2)

and the inequality constraints

c1(x) ~ 0 i = (k+l), . .. ,m. (3)

The functions f(x) and c
~
(x) are assumed continuously differentiable

to second order in the region

XL 
� X � XU (4)

where X
L and xU are the specified lower and upper bounds. Bounds

determine a reg ion of computability and , unlike constraints , cannot
be vioLated during the iterative process.

-5-
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Define the Lagrang ian function ,

L(x , A)  f(x) + cT (x) A (5)

where c(x) is the rn-vector of all constraints and A is the rn-vector -
of Lagrange multipliers. At the optimum point (x*, A*)

V L(x*, A*) = g(x*) + G(x*) A* = 0 (6)

where VL is the gradient vector of the Lagrangian function with
respect to x , g(x) is the gradient vector of f(x), and the n x m Jacobian

matrix is given by

~~
Cm

G(x) = 
[ Vc~ , • ., VCm J= (7) - 

-

bX~~

Furthermore,

c1 (x
*) = 0 1 = 1, . . ., m, (8) -

where

A1 � 0 i=(k+l), . . .,m. (9) 
4

In order to distinguish constraints that are active at a solution,

define the set

B* 
= {d c j ( x

*) = 0, i € (i , z, m }
~
, 

- 

(10)
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called the basic set of constraints .  An estimate B of the basic set of

constraints shall be re fe r red  to as a basis. Clearly B* contains all

equality constraints.  If the gradients  of the constraints in the basis
are linearly independent at the solution , then (6) , (8),  and (9) constitute

the Kuhn-Tucker necessary conditions for  the existenc e of an optimum.

Most nonlinear p rogramming  algori thms proceed by obtaining

a sequence of point s which eithe r satisfy the cr i ter ia  (8) which we shall
refer  to as the constraint condition or the c ondition (6) which we shall

refer  to as the Lagrang ian condition . Projected gradient algorithms ,

for example , attempt to satisf y the constraints  at each step while moving
toward sat isfact ion of the Lagrang ian condition. In contrast , penalty
function and multiplier methods attempt to satisf y the Lagrangian

condition and then move toward constraint satisfaction. The gradient

projection-multiplier method to be described cycles between satisfy ing
the Lagrangian condition and the constraint  condition.

Points satisfy ing the Lagrangian condition or the constraint
7

condition are located using an unconstrained optimization algorithm.
When the algorithm is app lied to the minimization of an augmented

objective function, a poin t satisf y ing the L,agrangian condition can be
located. A point satisfying the constraints can be found by apply ing the
same algorithm to the penalty function alone. The algorithm requires
both function and gradient information and is designed for the class of
problems in which the function and gradient evaluations are relatively
expensive f rom a computational standpoint.

Section 2 descr ibes the unconstra ined algori thm , and Section 3
discusses how the procedure is applied to constrained optimization.
The detailed descri ption of the constrained optimization algorithm is in

Section 4. Section 5 presents  numerical experience with the approach.

-7-
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SECTION 2 
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-

UNCONSTRAINED OPTIMIZATION ALGORITHM

In this section , the unconstrained optimization algorithm

developed in Ref.  I is modified somewhat . Specifically, we are
• concerned with the following augmented objective function: 

- 

—

J(x , ~~~, r) f(x) + cT (x) X + rP(x) L(x , X) + r P(x) , ( 1 1 )

where r is a scala r referred to as the penalty weight , A is an rn-vector

of estimates of the Lagrange multipliers, and the penalty function is

defined by

P(x) ~ cj
2 (x) + 

~~~ I 
~~

‘ 2(x) (12)
i(B  i B

where 
~~(x) = m m  [0 , ct (x) ~1, (13)

-‘ ii

• and B’, the complement of B, is the set of constraints not in the basis.

• Expressions for the first and second derivatives are obtained
by differentiation of (11). Thus,

V J = V L + r V P  (14)

where

VL g +GA (15)

and
VP = r 2c . (x) V c . (x )

iEB

+ E 2~ . (x) V~~~j  (x). (16)
i B ’

The Hessian matrix is

H = T + r (U+V), (17)

— - ~~~~~~~~~~~ -~~ 
- -
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~~~ ____
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where  T ~~~~ ( 18)

U ~ 2c 1(x )V 1c~ (x) I ~ 2~~~(x ) V ~~~ (x), (19)
i€ B iEB ’

and -

T ‘—j 
~~~ TV ZVc 1(x) V c~~(x) + 

I 
2 C ~ (x)~’c~(x) . (20)

iEB i~ B

When the function J is approximated b y a quadrat ic  function ,

an estimate of the minimum poin t can be obtained by locating the

minimum of the quadratic approximation.  The gradient at the minimum

point of the approximation must necessar i ly be zero , and it ca n be

demonstrated that the gradient condit ion defines the system of equations

Hs VJ . (21)

The Hessian matrix H is defined by (17) ,  where the matrices T and U

are approximated using a rank-one recursive formula orig inally stated

in Ref. 9 and specialized for least squares applications in Ref. 10.

The matrix V can be evaluated from local gradient information.

The search direction vector s is usually obtained by solving the system

(2 1),  and a new estimate of the optimum point constructed according to

~~~ x-p s .  (22)

The scalar p is determined by a one-dimensiona l search procedure.

Thus the unconstrained optimization algorithm proceeds by taking a

series of steps defined b y (22) ,  where at each iteration the Hessian

matr ix  H is constructed as previously described , and the direct ion

vector s is determined from (2 1) .  The current  method is unique in

that a dif ferent  method for the determination of the search direction

vector is proposed.

Define the j th element of the vector of constraints c~(x) , as

i(B

~j 
(x) = c1(x) if or

j EB ’ and c1(x) < 0 ,

where j  = 1... r~ ~ m. (23)

-10-
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The in constraints in the vector c shall be r e f e r r ed  to as active con-
straints. Using a similar notation for the corresponding

gra-lients , define the Jacobian matr ix  of active constraints  G, and (14)

become s

VJ = VL  + Z r G  (24)

where the definition ( 16) has been used. In like fashion , if we define

A T + r U , (25)

the expression for the Hessian matrix (17) is

H = A + Z r G G T. ( 26)

Combining (21),  (24),  and (26) one obtains the system of equations

(A + Zr G GT ) ~ = V L  + Zr Gc , (27)

7

• Define the augmented system of equations

• /A G \ /s\  /VL + ZrGc
I -. I ~. 1= I I (28)

\G
1 

- 

~Y/ \X/  o /

where  the vector X has a dimension equal to the number of columns in

G or the number of activ e constr aints. I is the ~h x i~~ identif y matrix.

Let us show: (a) that the vector s obtained by solving (27)  is

equal to that obtained by solving (28) ,  and (b) that the vecto r s obtained

by solving (28) approaches the projected gradient direction as r becomes

large. To indic ate that the solution of (27) is equal to that obtained f rom

(28).  we employ the formula for the inverse of a matrix in terms of

submatric es:
— 1

• /A G \ = /C 11
T ) (29)

Zr \ C 12 C2 2/

- _ _ _ _ _ _ _  --
~~~~~~~~~~~~ 

- i i -  ~~~~~~~~~~~~~

- - . -  - - - -
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where

C11 (A+ Zr G GT)

C 12 = Zr C 11 G

C22 
4r2 ~T c11

Clearly from (28) and (29)

s = (A + Zr ÔÔ
T)

_ l  
(VL + Zr Gc) (30)

which is the solution obtained from (27).

To investigate the limiting behavior it is convenient to expand

(28) to form -

As + OX VL + Zr 
~~ (31)

and

- 

~ r X = 0. (32)

It has been demonstrated by Fiacco and McCormick (Ref. lZ)~
that

Alim Z rc X
(33)

where 5. is the vector of Lagrange multipliers. Assume that

U = 0 (which is reasonable for large r),  so that A is independent of r .

Applying this limiting expression, (3 1) becomes

As VL. (34) - -

- 12-
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Furthermore we can write (32) as

âT~~~~~ (35)

Making use of the definition of VL from (15) it follows tha t (34) and

(35) can be written as

/A o\ /s\  /g\( .~T I ( .‘ I = ( A  ) • (36)
\G 0/ \~XJ

Solution of this system using the same partitioning formulas used in

(29) results in the standard projected gradient search direction.

Having considered the limiting behavior , it appears that there

is some advantage to determining the search direction using the

augmented system (28) instead of the system (27).  Specifically, the
condition number of the augmented system should approach a constant

value as r becomes large, since the system (28) approaches the

system (36) . In contrast , Fletcher and McCann (Ref .  6) report that

the condition number of the system (27) becomes infinite as r increases.
. Thus , at the expense of solving the larger system (28), the ill-

conditioning associated with the solution of (27) can be avoided.

A second advantage of the proposed method is the fact that it is

unnecessary to assume that A is positive definite. Consequently, the

suggested approach is applicable when methods requiring inversion

or Cholesky decomposition of A are not. For example, a linear

objectiv e function poses no difficulty in the new method , s inc e it is not

necessary.that A have full rank.

Having discussed the general procedure for computing the search

direction vector , let us make some observations pertinent to spec ific

applications. First, it should be clear that the general algorithm is

applicable to unconstrained optimization problems if we set m = 0 and

r 0. Nonlinear least squares problems can be solved us ing the

algorithm if we set f(x) = 0 , VL 0 , and r = 1 for m ~ n. Further-

2- mor e, the algorithm can be used to satisfy the constraints in con-

strained optimization by posing a least squares problem with m n

- 13-
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and VL  = 0. W ith two exceptions , the search direction is determined

from (28). The first exception involves the nonlinear least squares

case when the matrix U = 0 . In this instance, it is numerically preferable

to apply the linear least squa res algorithm directly to (35). The second

exception occurs when solving constraints in a constrained optimization

problem with U 0 and m < n. In this situation we solve (36), which
is the limiting form of (28).

It should be noted at this point t~ . .t any technique for solving
linea r systems can be applied to (28). For the class of problems of

interest to the author , the computational cost of evaluating the function
and gradient is far  greater than the cost of solving the system of

equations. Consequently, in the computer implementation, the system

(28) is solved using the linear least squares procedure deEcribed in

Ref . 13.

To summariz e, an algorithm for finding the unconstrained

minimum of the augmented objective function (11) has been outlined.

The algorithm consists of a sequence of steps g iven by (22) in the

directions defined by the vector s. The vector s is computed by solving

the augmented system (28) subject to the exceptions noted above. The

Hessian matrices are generated recur3ively using a rank-one formula

as described in the references.

-14-
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APPUCATION TO CONSTRAINED OPTIMIZATION

Having developed a general unconstrained optimization algorithm,
let us consider its use in an overall nonlinear programming method. It
has been established that a point which minimizes the augmented objective
function ( 1 1)  also satisfies the Lagrangian condition (6) for specified
penalty weight r and multipliers X. It was indicated above that a point
satisf ying the constraint condition (8) could be determined by minimizing
J, provided that we set L(x, X) = 0 and r = 1. Since for i~~i < n there are
fewer constraints than variables, in general, there is no unique solution
to the constraints . In order to make the point on the constraint surface
unique , it is also required that the loc al quadratic approximation to the —

objective function be minimized. The search direction determined from
(28) or (36) does, in fact, determine a unique point which is the exact
solution when the constraints are linear and the objective function is
quadratic. In fact, the accelerated multiplier method of Ref. I uses a
single quadratic-linear step of the form (36). A principle diffe rence
between the new algorithm and that of Ref .  I is the repeated use of the
quadratic-linear steps until a point satisf ying the con straints is located.

The unconstrained minimization algorithm requires a specified
basis estimate B and specified multiplier estimates X. Estimates of
the multipliers are obtained by minimizing the error in the Kuhn-Tucke r
conditions. The multiplier estimates are then used to construct an e.ti-
mate of the basis. The basis determination process computes multipliers
and constructs a basis estimate at any point x . Detail s of the process
are described in Ref .  1.

- 15-
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SECTION 4

THE GRADIENT PROJECTION MULTIP LIER A LGORITHM

• The basic steps of the gradient projection multiplier algorithm are:

Step 1. Lagrangian Phase: For a fixed basis Bk , fixed multipliers
• A1~, and fixed penalty weight rk minimize the augmented objective

function (11) using the unconstrained optimization algorithm given in

Section 2. Call the solution ~~~~~.

Step 2. Basis Determination: Keeping ~ fixed , compute a new basis

B and multipliers ~~using the procedure described in Re f .  1.

Stçp 3. Constraint Phase: Beg inning a t x  with the fixed basis B ,

minimize the augmented objective function (11) with L = 0 and r = 1.

Call the solution ~
k+l u P(~ ’~~ ’) ~ 0, constraints may be inconsistent. ) -

Step 4. Basis Determination: Keep ing x~~~
1 fixed , determine a new

basis Bk+l and multipliers us ing the procedure described in

R ef. 1. When checking for incons istent constraints, B1
~~

1 must be
- - different than ~~; if not , terminate .

Step 5. Convergence Test: e(x , A) < 6 1 and 
~ r < where e(x , k )  is

the absolute error in the Kuhn-Tucker conditions (6) and (8), and ar is an

estimate of the resolution error  in the variables x and X . (cf. Ref. 1).

- - Step 6. Penalty Wei ght Definition: If B~~~
1 = = Bk, keep penalty weight

unchanged, 1. e. , set r’~~ ~ = rk . Otherwise, increase penalty weight

(cf. Ref. 1).

Step 7. Update Information: Set k = k+ 1, ~
k 

~k+ 1, ~k ~ k+ 1

B’~ = B1
~~

1, etc . Return to Step 1.

A number of points regarding the implementation of the

overall algorithm now deserve cla r ification. First , observe tha t

current gradient and Hessian matr ix information is used to

initiate the different operations . For example , the Hessian matrices

generated by the unconstrained algorithm during the Lagrangian phase

can be used to initiate the penalty minimization in the constraint phase.

Secondly, when there is an indication of inconsistent constraints , the

It.
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basis determination procedure constructs a new basis by deleting all

satisfied constraints from the old basis. If no constraints can be

deleted, the algorithm terminates in an error mode .

The philosophy of the algorithm is to alternately satisf y the

— Lagrangian condition V L(x, A )  = 0 and the constraint condition.

During the constraint phase of the algorithm the search directions are

computed using the assumption that the objective function is quadratic

and the constraints are linear , resulting in the projected gradient

directions. The penalty weight is not increased once the correct basis

is determined; however, it is allowed to incr ease dur ing the basis
determination process. This procedure prevents cycling between two

or more incorrect estimates of the basic set of constraints. Further-

- 
- more, the correct basis B* is usually identified quickly because of the

forced increase in the penalty weight.

I~i
-18-
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SECTION 5

NUMERICAL EXPERIENCE

The algorithm described in the previous section has been

implemented in a digital computer program . A rather extensive set of

test problems have been solved using a CDC 7600 digital computer.

This section presents the results of this numerical experience. Most

of the problems have been drawn from the literature, and it is felt

that the mathematical complexity and nonlinearity is fairly representative

of the kind of problems encountered in practice. However , the problems

do have two significant attributes which are distinct from those commonly

encountered in engineering problems.
First , the function evaluation process is relatively inexpensive,

and errors in the evaluation process are on the order of the machine

accuracy. Similarly, accurate gradients can be obtained cheaply for

the test problems. For practical problems , however , function evaluations

can be quite costly and may contain inaccuracies significantly larger
7-

than the machine accuracy. (A typical trajectory optimization example
— is described in Ref. 14. ) Because the function evaluations for these

practical problems are so costly with respect to the computational ex-

pense of the optimization algorithm , we have used the number of function

evaluations as a measure of algorithm effectiveness.

Secondly, the required gradient information is obtained by
evaluating corresponding analytically derived partial derivative
expressions. Practical problems, on the other hand , may require
that gradient information be evaluated using numerical methods. For
this reason, no attempt has been made to present an “equivalent” number
of function evaluations, because such a quantity is highly dependent upon
the numerical differentiation procedure. Such quantities as perturbation
sizes and error tolerances can greatly influence the accuracy of
numerical derivatives and consequently obscure the overall behavior of

the optimization process. If gradient information must be obtained
-
~ j  . numerically, one can expect a two -fold degradation: ( 1) because each

gradient evaluation will require one or more additional function evaluations ,

and (2) becaus e inaccurate gradient information may necessitate more

optimization iterations .

- 19-
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The test problems given in the appendix have been organized
into four separate categories: ( 1) unconstrained, (2) nonlinear least
squares , (3) equality constrained, and (4) inequality constrained. The
results are presented in Tables 1 through 4 in condensed form for each
of the categories. Specifically, we present the number of function and
gradient evaluations required for convergence. For example, the first

problem was solved by evaluating the objective function , constraints , and

the corresponding gradient vectors at four points . For all problems ,

convergence is defined as in Ref. 1 with 61 = 62 = 10~~~, which guarantees

five significant figures accuracy in the solution, and absolute satisfaction

of the constraint and Lagrangian conditions to within 10~~ . The number

of cycles of the algorithm is presented for the constrained examples. It

- 

- 

is the author ’s opinion that despite the theoretical elegance of a general
mathematical programming algorithm, one can not espouse its numerical

effectiveness w ithout solving a set of test problems at least as broad as

those given.
1

-20 -
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SECTION 6

SUMMARY AND CONCLUSIONS

This paper describes a gradient projection-mult iplier method

for solving the general nonlinear programming problem. The algorithm

poses a sequenc e of unconstrained optimization problems which are

solved us ing a new projection-like formula to define the search directions.

Ill conditioning of the search direction computation is avoided by using

an expression which approaches the projected gradient direction for

large penalty weig hts. The unconstrained algorithm is used to locate

points where the Lagrangian condition VL(x , A) 0 is satisfied by

minimiz ing  the augmented objective funct ion.  Points satisf ying the

constraints are located by app ly ing the unconstrained algorithm to the

penalty function. New estimates of the Lagrange multipliers and basis

constraints are made at points satisf y ing the Lagrangian condition and

the constraint condition. The penalty weight is increased only when

necessary to prevent cycling. Although we do not prove quadratic

convergence, numerical experience tends to confirm this assertion.

- - -  - 
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Table 1. Unconstrained Problems

Problem No. Function and Gradient Evaluations

2 49 . - -

3 57
4 34

5 12

6 8
7 28

8 17

9 113

10 6

11 54

Table 2. Nonlinear Least Squares Problems

Problem No. Function and Gradient Evaluations

1 6
2 27
3 11

4 9
5 2
6 15
7 6

8 22

9 12 H
10 10

11 3 - -

12 7 —

13 15 
- 

-

-22-
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Ta ble 3. Equali ty Constrained Problems

Problem No. Function and Gradient No. of Cycles
Evaluations

1 8 1

2 10 1

3 21 2

4 17 2

5 17 1

6 19 2

7 18 2

8 16 2 H
9 6 1

10 6a 1

- 

- 

11 18b 1 7

12 27 1

13 188 2 1~~

14 46 2

15 60 2
16 141 2

17 39 1

a Algorithm terminated at a saddlepoint (VP(x~ ) = 0 , although

P(x*) #0 , and P(x) = 0 does exist) .

b Inconsistent constraints (P(x*) = 0 does not exist) .

-23-
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Table 4. Inequality Constrained Problems

Problem No. Function and G r a d i e n t  No. of Cyc le s
Evalua t ions

1 2 1 1 
- L

2 5 1

3 22 . 1

4 28 2

5 18 1

6 58 2

7 50 4

8 50 2

9 32 3

10 28 2

11 43 1

12 43 3

13 77 3

14 27a

15 25 2

16 17a 1

17 40 3

18 48 3

19 2 1 2

20 65 4

2 1 13 1

22 14 2

23 33 2

24 48 3

25 38 2

26 29 2

27 81 1

28 318 1

29 9 1
- - 30 79 i

31 86 1

32 29 1
33 43a 1

34 9 1
- 

- 

a Constraint  gradients a re  linearly dependent at x’~.

-24-
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APPENDIX

NONLINEAR PROGRAMMING TEST PROB LEMS

This appendix presents the set of test problems used to assess 
I 

-

the effectiveness of the nonlinear programming al gori thm described.

The problems are organized into four categories :  ( 1) unconstrained

problems , (2) nonlinear least squares problems , (3~ equality constrained

problems , and (4) inequality constrained problems .

When no information is given to the c ontrary,  one ca n as sume

all quantities used by the numerical processes are scaled (in the

sense described in the Appendix of Ref. 9) in the range -20 ~ x ~ 20.

Unless noted otherwise , the initial penalty weight is r 0 1, and the

initial basis is assumed t .  be empty, i . e .  , B° = [d 1 } . The points x*

presented are converged values where convergence is defined in Section 7 of

Ref. 1 , with 61 62 = 10~~~. When the exact solution is known , its value

is prescnted following the computationally obtained value . To conserve

space , problem statement s appearin g elsewhere in consistent notation

are merely referenc~ d.
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A. 1 UNCONSTRAINED PROBLEMS

1. Ref. 15

Minimize f(x) = x 1
2 

- 2x1x2 + 2x2
2

-50 ~ x ~ 50
0

x = (4 , 2)

x* (2. 1316 x ~~- l4, 1.0658 x lO _ 14
) ; (0 , 0)

f* 2 .2 7 l 9 x  io _2 8 ; ~
no scaling.

z. Ref. 16
2 2

Minimize f(x) = 100 (x2 - x1
2
) + (1 - x 1) -

x0 
= ( — 1 . 2 , 1)

x* = (1. ,  1.) ; (1 , 1)

f* = 6. 6421 x l0~~ 8 ; ~
no scaling.

3. Ref. 15

Minimize f(x) = (x
1 + lO x 2) 2 + 5(x

3 
- x4)

2

+ (x2 - 2x
3)
4 + lO(x 1 - x4)

4

-50~~xs50

x0 
= (3, — i , 0 , 1)

x
~ 

= (1 . 8159 x IO~~ , -1. 8159 x i0~~~, 9.398 x 10~~ , 9.3980 x 1O~~ )
(0 , 0 , 0, 0)

2.3943 x io _ 15 ; 0

no scaling.

-28-



4. Ref. 15

Minimize f(x) 100 [(x3 
- 1O~ ) 2 

+ ( r _ I ) 2] + x3
2

where
tan ’ (x

2
/x 1 ) x 1 >O

=

2 

i r +  tan 1 (x
2/x 1

) x 1<O

r = (x 1 + x2 )

-5 ~ x1,x2~ 5

-2. 5~~x 3~~7 . 5

x0 ( — 1 , 0 , 0)

x~ ( 1 ., 5.2171 x l(,~~~
0 , 6 .0920 x lO

_ 10
) ; (1 , 0 , 0)

- 

-
~ f” = 7.9033 x 10~~~~ ; 0

no scaling.

5. Ref. 17

2 2 2
Minimize f(x) (x

2 
- x 1 ) + ( 1 - x 1)

- lO0~~x~~100

0x = (-2 , —2)

x~ = (9. 9999 x 10
_ i

, 9. 9999 x 10
_ i

) ; ( 1 , 1)

= 2 .480 9x  io~ 16 ; 0

no scaling.

- 2 9 -
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6. Ref. 17
2

Minimize f(x) (x2 - x 1 ) + 100 (1 - x 1)

-1OO~~x~~lOO

0x = (1 , 5)

x* = ( 1 . ,  1.) ; ( 1 , 1) -

1.0 172 x 10 -21 ; 0

no scaling.

7. Ref. 17
2 2

Minimiz e f(x) = 100 (x2 
- ~c~~) + ( 1-x 1)

-100~~x~~100

x~ = (- 1 . 2 , 1)

* 1 -1x = (9. 9999 x 10 , 9.9999 x 10 ) ; ( 1 , 1) . 
—

F f* = 2.0912 x io _ 13 ; a

L no scaling.

8. Ref. 18

Minimize f(x) 
~~~ ~ 

[ai - x 1 ( 1 _x~~)] 
2

where

a 1 = 1.5 , a2 = 2 .25 , a~ = 2. 625

— l O0sx~~iO0

0x = (8 , .2 )

x* = (3 . 5) ; (3 , . 5 )

f* = 1.7257 x 10~~~ 0

no scaling.

~~~ 

_ _ _ _ _ _  

-30-
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9. R ef. 20 4

Minimize f(x) = 100 (x2 - x 1 )
2 + (1 - x1)

2 
+ 90 (x4 - x3

2
) 
2

+ (1 - x
3)
2 

+ 10. 1 C ( x 2 - 1) 2 + (x4 - l) 2 J

+ 19. 8 (x 2 - l ) (x4 - l )

-l0~~~x � l0

x0 = (-3 , -1 , -3 , -1)

= (1 , 1, 1, 1)

~~~~ .1969x10
’6; 0

no scaling.

10. Ref. 21 10

Minimize f(x) E ~ E 1n (x~ -Z ) J
2 

+ [ln (lO _ x 1)J 2
~

- 
u - ( Il x1) 

.2

1=1

2.001 ~x~~9.999

x~ = 9 i = 1, . . . ,  10

x
~L
’ 

= 9.3503 i 1, .  .. 10.

f* = -45. 778

no scaling.
- f t
i i, L
¶

1

-31-
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11. Rcf.  2 1 99
- x 2~

Minimize f(x) 

~~~ 

[ exp - - .O l i  j

2/3
where u1 = 25 + (-50 ln . O h )

• 1 ~ x 1 ~ 101

0 ~ x 2 ~ 25. 6

0 ~ x3 ~ 
5,,

x 0 = (100 , 12.5 , 3)

(50 , 25 , L5)

f~ = .52009 x l0 17 ; 0

t

- 32-
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A. 2 NONLINEAR LEAST SQUARES PROBLEMS

Problems. 1-10: Problems 1-10 in Ref 10. p

Problem 11 . Ref .  19
21

Minimize f(x) r c~ (x)
i~ 1

where t1 i - 1

2 3 4 5
y1 1 + t 1 + t 1 + t ~ + t i + t ~

2 3 4 5
ci(x) = y~ 

- (xj  + x2 t1 4 x3t1 + x4t + x5t 1 + x6t . )

x1
0 0 i 1, . .  .6

x~
’ = (1.00000 , 1.00000 , 1.00000 , 1.00000 , 1.00000 , 1. 00000)

• f* = • 13777 x lO
_ 14

No scaling

Problem 12.
13

Minimiz e f(x) = ~~ c1
2 (x)

i=l

where c1(x) 
~~ 

(y ~ - r x 1 u~ + exp (x 2v~)] 3

and u~, v1, w1, and y~ are given in Table A-I .

-33- 
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TABLE A-i

i u 1 V
1 

y~

1 0 0 100 2. 93

2 0 1 100 1.95

3 0 2 100 .81

4 0 3 100 .58

5 1 0 50 5. 90

6 1 1 50 4.74

7 1 2 50 4. 18

8 1 2 50 4 .05  - 1

9 2 0 25 9.03

10 2 1 25 7 .85
I
~

_

t
11 2 2 25 7 .22

12 2 .5  2 10 8. 50

13 2 .9  1.8 10 9.8 1

-10 � x � 10

x0 = (3.01 , - .51)

x~ = (3 5593 , -. 13414)

= 651. 147

No Scaling .

Problem 13. Problem No.11 in Ref. 10.

- - 
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1A. 3 EQUALIT Y CONSTRA INED PROB LEMS

Problems 1-12: Problems 1-12 in Ref. I.

13.

Minimize f(x) = .001 x 1 +

c 1(x) = 10~ (x 2 - x 1
2) = 0

-100 � x~~~100

0
-

- 
x = ( 1 , 1)

x* = (~~. 49999 x 10~~ , .25000 x lO
_6

)

= -. 249999 x 10 6

No scaling

14.

Minimize f(x) = .001 x 1 + x2

c 1(x) —1000 x 1
2 -100 x2

2 
+ x3 0

c2(x) = 100 x 1
2 + 400 x2

2 
+ x 3 -.01 0

-10 � x £ 10

x° (i , 1, 1)

x* = (. 20908 x ~~~~~ .4472 1 x iO~~~, . 20000 x j o
_ i

)

f* = .44721 x i0~~

No scaling.

-35-
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15. Ref. 21

Minimize f(x) =
~~~ 

xi 
(ai + In 

10 

,
~‘ 

)E Xj
j = 1

where a 1 = -6. 089 a2 = 17. 164 a3 = -34. 054

a4 = -5.914 a 5 = -24. 721 a6 -14. 986

a7 = -24. 100 a8 = - 10.708 a9 -26. 662

a10 = -22. 179

c 1(x) = x 1 + 2x2 + 2x
3 + x6 + x10 -2 = 0

c2
(x) x

4 
+ 2x 5 + x

6 
+ ,c.

~ 
-l =

c3
(x) x

3 + x 7 +x 8+ 2 .x9 + x 10 -1 = 0

1. x l0~~ ~ x ~ 10

x 0 . l i = 1 , . . . , 10

x~ (.40668 x hO
_ i

, . 14773 , .78315 , . 14142 x ~~~~~ .48524 ,

. 69317 x 10~~~, .27399 x 10~~~, .17947 x 10
_ i

, .37314 x 10 k ,

.96871 x 10
_ i
)

f* = -47.761

no scaling.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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16. Ref. 2 1 10 10
- 

- - Minimize f(x) {e’~i I a1 + x~ - i~(~~~ e”j) :i}

where the a1 are g iven in Problem 15.

c1(x) = eX i + 2e~C2 + 2eX3 + eX6 + e~
C 1O - 2 = 0

c2(x) = eX4 + 2e’~5 + eX6 ÷ eX7 - 1 = 0

c3(x) = eX3 + eX7 + eX8 + ZeX9 + e~C l0 - 1 = 0

-100 � x ~ 100

x
0 = -2.3 i = h ....,10
1

x~ = (-3.2024 , -1.9123 , -. 24441 , -15. 670 , - .72 166 ,

-7. 2736 , -3. 5965 , -4. 0206 , -3. 2885, -2. 3344)

f* = -47.760

Constraint scaling: w1 
10 , i = 1, 2 , 3.

17. Ref. 21

2 2Minimize f(x) = 1000 - - 2x 2 - x
3 

- x 1x2 
- x 1x3

2 2 2
c1(x) x 1 + x

2 
+ x  - 2 5 = 0

c2(x) = 8x 1 + i4x 2 + 7x3 - 56 0

0 ~ x ~ 100

x°= ( 2 , 2, 2)

• x~ = (3. 5121 , .21698 , 3. 5522)

= 96 1.715

- 1 No scaling.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -_______________________ ___ _ _ _ _



A. 4 INEQUA LITY CONSTRA INE D PROB LEMS

Problems 1-26: Problems 1-26 in Ref 1. . P
27. Problem 27 in Ref. 1 except with

Constraint scaling:

-6w = 10

w. = 1 i = 1, 2 , 3 , 4 , 5, 7

w = 10

w 8
W

9 
100

w. = i0~~ i = 10 , 11 , 12 , 13 , 14 , 15 
-r 

-

28. l~ef. 20
15 5 5 5

Maximiz e f(x) 
~ 

P
~~~~~5 

X1 
- r v~

. x
~ 
x. - 2~~ ô

~ 
x

~
3

i=6 j = 1  i=i ~ ~ j = i

c1(x) = x1 � 0 = 1, . .  . 15

cj (x) Ej~~j 5  + ~ ~~-l 5  X 3- 15 + ~~ ~i, j - i5  X~

15
-E ~~~. x. � 0 j = 16, . .  . 20.

i=6 ~~~ j -15

where the coefficients ~~~, ~~~, 
y, 6, and E are g iven in Problem 17 of Ref 1.

-iO � xi ’z O i = 1 , . . .,  11

- 1OO~~~x 12~~~ lOO

-38-
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-10 � � 10 i = 13 , 14 , 15.

x~ = .0001 i = 1 , . .  . , 15; i~ 12

0
x = 6 0

x = (. 30000 , . 33346 , . 40000 , . 42832 , .22 397 ,

0 . ,  -. 56843 x io
_ 13 , 5. 1740 , 0 . ,  3. 06111 ,

11.8396 , 0 . ,  O . ,  . 10391 , 0 . )

f’~ = -32. 3486

Constraint scaling:

w~ = 10 for i = 6 , 12 , 13

w 1 = 1 otherwise

29. Ref. 21

Minimize f(x) - 2)~ + (x 2 - 1) 2

c1 (x) x 1 -2x 2 + l O

2
c2(x) = - - x~ + 1 � 0

4

-10 ~- x ~~ 10

x°= ( 2 , 2)

x = ( .822 87 , .91143)

C 1. 3934

no scaling .

H

H t
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30. Ref. 2 1

Maximize f(x ) 7~~. 196 -3. 8112 x 1 
-
~
- 12694 x~ p

-2. 0567 x 10~~ x~ + 1.0345 ~ lO~~ x~ -6. 8306 x 2

~~~. 030234 x1x2 
-1. 28134 x 1O~~ x 2x~

3 4
± 3. 5256 x l0~~ x2x1 -2 . 266 x lO~~ x2x1

_ 3 3 _ 5 4
i- . 2 56 4 5 x ~ -3.4604 x 10 + 1 .35 14 x 10 x 2

- 1 _ & 2 2
-(28.  106) (x2 + 1) -5. 237 5 x 10 x 1 x2

-6. 3 x 1o 8 x~ x~ + 7 x ~~~~~ x~ x~

2 -6 ~+ 3.4054 x 10 x1x2 
- 1. 6638 x 10 x 1x 2

-2. 8673 exp ( .0 0 0 5  x 1x2)

c1 (x) = x 1x2 - 700 ~ 0

I ‘2
c2(x) = x2 - 5 (~~ l ~ � 0

c3(x) = (x 2 - 50) 2 
- S(x 1 - 55)

c4(x) = 75 - x 1 
� 0

c 5(x) 65 - x 2 ~~ 0

O ~~x~~~ ZO O

0x (90 , 10)

x
4 (75 , 65)

= 58.903

no scaling.
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31. Ref .  20. p. 3 1 .  (Also  Ref .  21 , p. 401) H

32. Ref. 2 1

Minimize f(x) = (~ 1 - ~~) 2

x 2 / xZ \ i i z  fa . \ (x
~~~

1)
where y. = x 3 ~ ( _______ 

1 1
1 \6.2832/ \7.658J

/ a . x \  I
. exp ( x  -~~~~~ 

‘ ~ ) ( i + ~~2 7 .658/  \ 12x 2

• + (1 ~~ X
3

) 

(

~~~~
)X

i ( x~ 
)

l/ 2  

( a . ) (x~~- 1)

x4 6. 2832 7. 658

exp (xi -~~ 

a~~x 1 ~~ (~ + - ~- 
‘

~
7. 658x

4J \ 12x~~
J

= x 3 + ( 1-x 3)x 4 -
and the a1 and are given in Table A -2

c 1 (x) = x 3 + ( 1~~x 3)x 4 0

l x l O

x0 
= (2 , 4 , .04 , 2)

(12.  277,  4. 6318 , .31286 , 2. 0293)

= . 74985 ,~ io
2

~~ :

-4 1-
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- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TABLE A-2

- - -~~ ~~. - - - -  . p
1’ 1 a 1 y i 1 a. y i

1 .1  .00189 11 10 . 702.

2 1 . 1038 12 11 . 528

3 2 . 268 13 12 . 385

4 3 . 506 14 13 .257

5 4 .577  15 14 .159

6 5 . 604 16 15 .0869

7 6 . 725 17 16 . 0453

8 7 . 898 18 17 .01509

9 S . 947 19 18 .00189

10 9 . 845

33. Ref. 2 1 -

Maximize f(x) = . 5 (x 1x~ - x2x3 + x3x9 
- x5x9 

+ x 5x8 
- x6

x7)

2 2
c 1 (x) = 1 - x3 

- x4 
� 0

c2
(x) = 1 - x~ ~ 0

2
c3

(x) = 1 - x 5 
- x 6 

� 0

c4
(x) = 1 - x 1 

- (x2 - x9)

c 5
(x) = 1 - (x 1 

- x5
) - (x

2 
- x

6)

2
- 1  c6

(x) = 1 - (x 1 
- x7) - (x2 x8) 0

c7
(x) = 1 - (x

3 
- x 5) - (x 4 - x6)
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c8
(x) = 1 - (x~ x.7) - (x

4 
- x

8
) �

a 2
c
9

(x) = 1 - x.7 - (x 8 - X
9

) ~ 0

c10 (x) = x 1x4 
- x2x3 ~ 0

c 11(x) = x3x9 
� 0

c 12 (x)=- x5x9 
� 0

c 13 (x) x 5x8 
- x

6
x
7 ~ 0

c14(x) = x
9 ~~0

-2~~~~x~~~~Z

x0 = 1  i l , . . . , 9
1

= (. 91878, . 39476 , . 11752 , . 99307 , .9187 8,

. 3947 6, .11752 , .99 307 , - . 60445 x io~~~ )

= . 86602

no scaling.

34. Ref. 21

Minimize f(x) = (x 1 
_ 2)2 + (x 2 

_ 1) 2

c 1(x) = -x~ + x2 ~ 0

c2(x) = -x 1 
- x2 + 2 ~ 0

L x0 = ( 2 , 2)

x~ = ( i , 1)

f* =

no scaling.
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